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Broadly speaking, the rate at  which a bimolecular 
chemical reaction occurs is determined by two factors, 
one chemical and the other physical. Chemical factors, 
such as local electron density, determine the intrinsic 
rate of reaction when reactants approach close to one 
another. Physical factors, on the other hand, determine 
the rate at  which these potentially reactive encounters 
occur. In dilute gases these chemical and physical 
factors are neatly separated. Gas-phase chemistry can 
be lumped into the reactive collision cross section, which 
determines the probability that reaction occurs upon 
collision.’ The physics of gas-phase reactions is de- 
termined by the collision rate, which can be calculated 
from the kinetic theory of gases. When both fadors are 
known, the bimolecular rate constant can be written in 
terms of an integral. Unless a gas-phase reaction occurs 
with a nonequilibrium distribution of velocities or in- 
ternal states, as it does for hot atom reactions,2 the 
chemistry and physics of gas phase reactions do not 
affect one another. 

The situation in solution is not so simple. Indeed, 
in solution molecules are constantly jostling one another 
and the notion of an isolated binary collision no longer 
makes sense. Nonetheless, it  is still possible to think 
in terms of the same chemical and physical factors that 
are important in gases. The chemistry in solution can 
be expressed as an intrinsic reactivity coefficient. This 
coefficient determines the reaction rate when reactanb 
have a given spatial separation and orientation. In 
solution the physical factor is determined by the num- 
ber of reactant pairs at a given separation and orien- 
tation. Unless the intrinsic reaction rate is slow, the 
physical factor depends strongly on the chemical factor. 
Thus the measured rate of a rapid chemical reaction 
may involve a subtle combination of both factors. This 
was recognized some 70 years ago by Smoluch~wski,~ 
who noticed that the rate at which two reactants diffuse 
together might be rate determining for rapid chemical 
reactions. Such reactions are said to be diffusion con- 
trolled and include processes like fluorescence 
quenching, neutralization reactions, and recombination 
of radical pairs.4 

According to Smoluchowski’s original t h e ~ r y , ~  the 
observed rate constant, koW, for the rapid bimolecular 
reaction in eq 1 

(1) A + B - products 
can be written in terms of the diffusion constants, DA 
and DB, of A and B as 
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kobsd = 4?r(D~ f DB)R E 4rDR (2) 

The parameter R is called the encounter radius and 
measures the relative separation of A and B at  which 
reaction occurs. Smoluchowski’s picture of reaction 1 
is simple. The reaction is presumed to be so rapid that 
whenever an A and B come within the encounter radius, 
reaction occurs. Sitting on an A molecule, one witnesses 
an incoming flux of B molecules due to diffusion. Av- 
eraging over all A molecules, this flux would appear to 
be adsorbed at  the encounter radius, R. This flux be- 
comes constant if every time a reaction occurs, another 
A and B molecule are added to solution. Smoluchowski 
used Fick’s law of diffusion with the relative diffusion 
constant D’ = DA + DB to calculate the diffusion flux 
of B molecules toward a central A molecule. This re- 
sults in the reaction rate expression 

V+ = kObdpdB (3) 

where PA and PB are the average number densities of A 
and B in solution. 

The simplicity of Smoluchowski’s approach has much 
to recommend it, and it has become the textbook5 
method for describing diffusion effects on rapid chem- 
ical reactions. Several important modifications of the 
theory have been developed over the years. Collins and 
Kimbal16 showed how to treat reactions for which the 
chemical change was not instantaneous, Debye7 showed 
how to include the effect of the double layer around 
ionic reactants, and a program for studying density 
effecb has been elaborated.8 The idea of an encounter 
radius is maintained in these extensions. Although the 
exact value of this radius is ambiguous, at low densities 
the theory provides a reasonable interpretation for 
numerous  experiment^.^ 

As nice a picture as Smoluchowski’s theory provides, 
it has a number of drawbacks. For example, it is dif- 
ficult in the Smoluchowski theory to account for rapid 
processes like energy transfer which occur not at  con- 
tact, but over large distances. It is also difficult to treat 
the effect of competing chemical reactions. For exam- 
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spherical shell. The average number of B molecules in 
such a shell is obtained by averaging over all possible 
configurations that have an A at the center. Dividing 
this number by the volume of the shell, 47rr2dr, gives 
the average density of B in the shell, &A(r,t). The radial 
distribution function of B and A is the proportionality 
factor between the density in the shell at r and the bulk 
density, i.e. 

gBA(r,t) = PBA(r,t)/PB (4) 
w- 

Figure 1. Diagram of an instaneous configuration of B molecules 
(cross-hatched circles) around a central A molecule (open circles). 
The small circles represent solvent molecules. There are three 
B molecules with their centers of mass in the shell between r and 
r + dr. 

ple, in the case of fluorescence quenching the molecule 
A will be in an excited state. If the lifetime of that state 
is sufficiently short, the excited molecule A randomly 
appears and disappears, which requires that new ideas 
be added to the Smoluchowski theory.1° Finally, if one 
considers the Smoluchowski theory in two dimensions, 
the analogous calculation of the reaction rate cannot be 
carried out because of a logarithmic divergence in the 
steady-state solution to Fick’s diffusion equation.’l 
Several suggestions for patching-up this difficulty have 
been offered,12J3 but each gives a somewhat different 
result. 

In this Account I summarize a different approach for 
calculating bimolecular rate constants for rapid chem- 
ical reactions.14J5 The theory is based on the same 
intuitive combination of chemical and physical factors 
present in the Smoluchowski picture. Specific calcu- 
lations, however, are based on the mechanistic statistical 
theory of nonequilibrium thermodynamics.l6-ls The 
results of the theory reduce to the Smoluchowski theory 
and eq 2 in the appropriate limit. Moreover, the theory 
gives finite results in two dimensions and so is appli- 
cable to rapid reactions in membranes. Other effects 
that are difficult to treat with the Smoluchowski theory, 
including high concentrations of reactants, become 
tractable calculations with the present theory. 

Radial Distribution Functions and Chemical 
Reaction Rates 

A fundamental quantity in the analysis of the 
structure of liquids is the radial distribution fun~ti0n.l~ 
To understand what this function is, imagine sitting on 
a molecule of kind A in a ternary mixture of A, B, and 
solvent. If distances, r ,  are measured from the center 
of mass of A, there will be at  a given instant of time, 
t ,  a certain number of molecules of B in the spherical 
shell located between r and r + dr. For example, in 
Figure 1 the centers of three B molecules fall within the 
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Experimentally can be obtained from elastic X-ray, 
neutron, or light scattering studies.20 

The radial distribution function contains the physical 
information that is required to calculate reaction rates 
in solution. In general reaction can occur between A 
and B when they are separated by distances of molec- 
ular size. In the simplest case the reaction rate will 
depend only on the separation of the centers of mass, 
r ,  and can be written as a product of two factors. The 
chemical factor, k(r) ,  is called the intrinsic reaction rate 
constant at this separation. The physical factor is the 
average number of A-B pairs found in solution at that 
distance. Combining these factors allows the bimole- 
cular rate constant to be written in the form14J5 

(5) 

It is evident from eq 5 that if the radial distribution 
function depends on time, the rate constant kobsd will 
also depend on time. This reflects the changing number 
of A-B pairs at a given distance. To obtain a unique 
rate constant in solution, one must operate under con- 
ditions in which the statistical distribution of A-B pairs 
is constant. This will be the case if the system is either 
at thermal equilibrium or at a nonequilibrium steady 
state. A t  thermal equilibrium one can write 

where gBAe(r) is the equilibrium radial distribution 
function. If the solution is dilute and A and B are taken 
to be hard spheres of radii RA and RB, thenlg gBAe(r) = 
1 if r 2 (RA + RB). 

In general the radial distribution function is per- 
turbed at a nonequilibrium steady state. We can see 
what to expect already using Smoluchowski’s ideas. For 
the bimolecular chemical reaction A + B - products, 
constant average values of PA and PB can be maintained 
if A and B molecules are added to solution at the same 
rate at which they are removed by reaction. Under this 
steady condition Smoluchowski’s calculation5 yields the 
average density of B molecules around a central A to 
be &ASm0’(r) = p ~ ~ ’ ( 1  - l ? / r ) .  Comparing this to the 
definition of gBA in eq 4 gives Smoluchowski’s expres- 
sion for the radial distribution function: 

f 
(7) 

The difference between the equilibrium and steady- 
state forms of the radial distribution is due to the fact 
that at steady state B molecules are depleted at the 
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Figure 2. Graphs of the equilibrium radial distribution function 
of A-B pairs at  low density and the steady-state Smoluchowski 
radial distribution function in eq 12. 

encounter radius and are replaced slowly by diffusion 
from the bulk. This is illustrated in Figure 2. 

The Collins-Kimbal16 generalization of the Smolu- 
chowski theory to reactions that are not instantaneous 
is easy to obtain by using eq 5. To do so we use 
gBASmol(r) in eq 7 and an intrinsic reactivity that satisfies 
Smoluchowski’s idea that reaction occurs at  the en- 
counter radius R. This is called the Smoluchowski re- 
activity14J5 and has the form 

ksmol(r) = k06(R - r ) / 4 r r 2  (8) 

where 6(R - r )  is the Dirac delta function centered at 
R. Substituting eq 7 and 8 into 5 and integrating gives 
koW = kO(l - k o W / 4 r D R ) .  Solving for how then yields 

(9) 
When ko >> 4rD!R, the reaction is so fast that diffusion 
becomes rate limiting and eq 9 reduces to eq 2. When 
the reaction is slow ko << 4rD’R, eq 15 yields kobsd = 
ko and diffusion has no effect on the observed rate 
constant. Under this condition k 0 / 4 r D R  = koM/4rD!R 
<< 1 ,  and the Smoluchowski radial distribution func- 
tion in eq 7 becomes identical with the equilibrium 
radial distribution function. 

The effect of diffusion is to slow rapid reactions by 
reducing the access of B molecules to their reaction 
partners, A. Expressed in terms of the radial distri- 
bution functions in Figure 2, reaction depletes the B 
molecules neighboring an average A molecule. Reaction 
distorts the equilibrium radial distribution function into 
a nonequilibrium radial distribution function by pro- 
ducing a dip in the vicinity of the encounter radius. 

The problem of calculating the rate constant for a 
reaction in solution involves the intrinsic chemical re- 
activity, k(r) ,  and the radial distribution function. The 
form of the intrinsic reactivity function depends on the 
reaction and is determined by quantum mechanical 
considerations. For example, an electron-transfer re- 
action depends on the overlap of molecular orbitals and 
might be approximated with the form k ( r )  = ko exp(- 
r/ro) ,  where ro is some measure of the size of the mo- 
lecular orbitals. Energy transfer by a dipolar mecha- 
nism, on the other hand, is long ranged and according 
to ForsterlO k(r)  = 7l(R/r),6 where T is the fluorescence 
lifetime and R is an effective length that can be as large 
as 50 A. Whatever the explicit form of the intrinsic 
chemical reactivity, one needs to know the radial dis- 
tribution function in order to calculate the observed rate 
constant. 

KObsd = 4rD’Rk0/(4rD’R + ko) 

Density Fluctuations and the Radial 
Distribution Function 

The key to the connection of nonequilibrium ther- 
modynamics to the radial distribution function is 
through density fluctuations. Consider, again, the re- 
active mixture of A, B, and solvent sketched in Figure 
1. If A and B are replaced throughout the solution at 
the rate at  which they react, then the steady state will 
be characterized by uniform average number densities, 
pASs and pBss. However, at  any instant of time, t, the 
density pA(r,t) at position r will differ from pAs since 
A molecules are constantly reacting, being added to 
solution, and diffusing. The same is true for B, so that 
pB(r,t) will differ from pBm. These differences are called 
density fluctuations, defined by 6pA(r,t) = pA(r,t) - pAs 
and dpB(r,t) = pB(r,t) - pBss. Although the fluctuations 
vanish on the average, the product of the fluctuations 
does not. This average is called the A-B density cor- 
relation function and is written21 

( b ~ ~ ( r , t ) 6 ~ ~ ( r ’ , t )  )” (10) 
The angular brackets mean that the average is taken 
over a steady- state ensemble of possible configurations 
such as illustrated in Figure 1. 

It is not hard to show that the radial distribution 
function is related to the density correlation function.21 
In a uniform steady state the relationship when A and 
B are different id5 

gBA(lr - r’l) = 1 + (8~A(”6~B(r’,t))Bs/pAsspBss (11) 

If A and B are identical-say, both A-then the rela- 
tionship becomes15 
gAA(lr - r’l) = 

1 - 6(r - r’)/pAss + (6~A(” t )6~A(r ’ , t ) )ss /pAss2  (12) 

Knowledge of the density correlation function at steady 
state thus yield the steady-state pair correlation func- 
tion. 

Statistical Nonequilibrium Thermodynamics of 
Density Fluctuations 

The mechanistic statistical theory of nonequilibrium 
thermodynamics provides a systematic way of calcu- 
lating density correlation functions.16-18 To implement 
the theory one needs to know which molecular processes 
are significant. For rapid reactions the most important 
processes are chemical reactions and molecular diffu- 
sion. As an illustration of how the theory works, con- 
sider the dimerization reaction 

kobd 
A + A - A 2  (13) 

For simplicity the effect of the dimer and the back- 
reaction will be neglected, although this is not neces- 
sary.15 According to the mechanistic statistical theo- 
ry16-18 the average density of A, pA(r,t), satisfies the 
usual kinetic equations15 

dpA/dt = -2kobsdpA2 + DAV2pA + K (14) 

The first contribution to the time derivative comes from 
the dimerization reaction, the second involves diffusion, 
and K represents the constant rate of addition of A. 

(21) L. D. Landau and E. M. Lifshitz, “Statistical Physics”, 3rd ed., 
Part 1, Pergamon Press, Oxford, 1982, pp 350-53. 
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Since A is added uniformly, the steady state will have 
the uniform value pAss = (K/2k0bsd)1/2. 

The mechanistic statistical theory also provides the 
kinetic equations that govern the fluctuations.16-18 
These equations are obtained by linearizing the average 
equation and taking into account the random change 
that is caused by reaction and diffusion. Near the 
steady state this equation is 

d6pA/dt = -4kobsdpASs6pA + DAV26pA + 7 (15) 
The term, 7, is a random function of time, which van- 
ishes on the average. Because f is a Gaussian random 
process, it can be characterized by its covariance, which 
id5  
(T(r,t)?(r',t?) = 

This complicated appearing expression involves the 
Laplacian operator, V?, which acts on the coordinates 
r only. Its form is dictated by the general theory1"18 
and involves no adjustable parameters. 

Using eq 15 and 16 one can calculate the density 
correlation function for A at steady state. The solution 
requires several standard tricks, namely, Fourier 
transforms, solving the resulting linear differential 
equation, and averaging. After inverting the Fourier 
transform one finds that15 

(4kobsdpAss2 - ~ D A P A " V ? ) ~ ( ~  - r')6(t - t?  (16) 

(6PA(r,t)6PA(r',t) )" = 

where a = (oA/4k0b"dpA")1/2. Using eq 12 it follows that 
the steady-state radial distribution function is 

I t  is useful to compare this expression for g, with 
the result obtained from the Smoluchowski theory for 
the dimerization reaction. That theory gives9J5 

Lobad 

Two differences are evident. First eq 18 includes a 
factor exp(-lr - r'l/a). This factor makes the radial 
distribution function fall off faster with distance than 
in the Smoluchowski theory. 

The length scale of the fall-off is given by the so- 
called correlation length a,  whose size has a simple 
physical interpretation. Equation 15 shows that the 
average lifetime of an A molecule before dimerizing is 
7 = 1/4kobsdpss. Thus the correlation length can be 
expressed as a = (DA~)1/2. From elementary physical 
chemistry we recall that (6DA~)1/2 is the root-mean- 
square distance that an A molecule diffuses in time T .  

Thus the correlation length measures the root-mean- 
square distance that an A molecule moves before it 
dimerizes. This term is responsible for the bimolecular 
lifetime effects discussed in later sections and is im- 
portant15 at  concentrations above about 10 mM. The 
presence of this exponential factor is important for 
other reasons. Without it, the radial distribution 
function falls-off like l / r ,  which leads to a linear di- 
vergence in the molecule number correlation fun~ti0n.l~ 
This divergence is removed by the present theory. 

Another problem with the Smoluchowski theory re- 
sults from the fact that the reacting molecules are 
identical. The idea of singling out one of the identical 
molecules as stationary actually makes the two mole- 
cules distinguishable. In fact, identical particles do not 
diffuse with respect to each other, so the relative dif- 
fusion constant D' is not well-defined. Previous au- 
t h o r ~ ~  have chosen D' = 2Dk The choice D' = DA in 
eq 19 is the correct one and could be obtained in the 
Smoluchowski theory if the collision frequency were 
divided by 2 to correct for the identity of the reactants. 

Calculation of Rate Constants 
After obtaining the radial distribution function at  

steady state, calculation of the rate constant requires 
that one carry out the integral in eq 5. Using gAA(r) for 
the dimerization reaction and the Smoluchowski re- 
activity given in eq 8 leads to the expression15 

kobsd = 2.1rRDAkoeR/a/(2nRDAeR/a + Ito) (20) 

This is reminiscent of the Collins-Kimball equation (9) 
but is different because the right-hand side depends on 
the correlation length a = (DA/4k0bsdpAss)1/2, which in 
turn depends on kobsd. This equation is, in fact, not a 
solution for kobsd but a transcendental equation to be 
solved for KObsd. It is easy to solve in the limit that pAa 
goes to zero since then a goes to infinity and the factor 
eRla goes to one. Thus at low density 

(21) 

which is the Collins-Kimball equation for identical 
reactants. 

The equation also simplifies when the reaction is 
diffusion controlled, Le., when ko/2.1rDAR >> 1. Then 
eq 20 becomes 

kobsd = !hrRD~k~/(2.lrRD~ + bo) 

~ T R D A  eXp[R/ ( D ~ / 4 k ~ ~ ~ ~ p ~ ~ ~ ) ~ / ~ ]  (22) kobsd = 

Knowing R, the number density pA", and the diffusion 
constant, DA, one can easily solve eq 22 for kobsd by 
iteration. The iteration begins by choosing the ap- 
proximate value of kobsd to be kOobsd = 2.1rRDA. This 
value is then substituted into the right-hand side of eq 
22, which using the left-hand side gives a new approx- 
imate value, klobsd. This value, in turn, is substituted 
into the right-hand side of eq 22 to obtain kZobsd etc. 
This iteration procedure converges rapidly and can be 
carried out on a hand calculator to obtain the correct 
value of koM.  The same procedure works for different 
reactions14 and more complicated reactivity  function^.'^ 
Fluorescence Quenching in  Solution 

The methods in this Account are generally applicable 
to coupled chemical reactions in solution. Fluorescence 
quenching, for example, is described by the scheme 

A' + hv --+ A 

A 2 A' + hv' (23) 
k o u  

A + B - A ' + B  
The first reaction is excitation, the second is fluores- 
cence, and the third is bimolecular quenching. 
Quenching is often rapid in solution. Density fluctua- 
tions of the fluorophore A and the quencher B have 
been analyzed with use of the techniques described in 
previous sections.14J5 When combined with the Smo- 
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luchowski reactivity, the following transcendental 
equation for the bimolecular quenching rate constant 
is obtained:22 

47rD'Rk°C(R) 
47rD'RC(R) + ko 

kobsd = 

C(R) is a correction factor to the Collins-Kimball 
equation. The explicit expression for C(R), when the 
fluorophore is dilute, is23 

C(R) = exp(-RP1/2) + 

where the two correlation lengths are 

(26) 

Part of the correction C(R) involves a unimolecular 
lifetime effect: When the fluorophore A has a unimo- 
lecular lifetime ( T , ~  = l/kuni) short enough, diffusion 
is too slow to affect the quenching rate. For example, 
if the unimolecular lifetime is 1 ns and the diffusion 
constant is lo4 cmz/s, a quencher molecule moves only 
3 A during its lifetime. Clearly, then, only fluorophores 
that at  the moment of excitation already have a 
quencher within a few angstroms are likely to be 
quenched within their unimolecular lifetime. In the 
limit that T~~ goes to 0, C(R) is infinite. In this case 
eq 24 shows that Itobd = ko and diffusion has no effect 
on quenching. C(R) also contains corrections that de- 
pend on the bimolecular lifetime. The bimolecular 
lifetime of a fluorophore is Tbi = l/kobdpgss. At high 
quencher concentrations this lifetime is short enough 
to keep fluorophore molecules from diffusing appreci- 
ably. This increases the value of the rate constant at  
higher quencher concentrations. 

Both the unimolecular and bimolecular lifetime ef- 
fects are measureable and compared to experimental 
Stern-Volmer p10ts24p25 in Figure 3. The bimolecular 
lifetime effect shows up as positive curvature in these 
plots,26 compared to the linear prediction of the usual 
Smoluchowski theory. The bimolecular lifetime effect 
is seen to be quite large and can be differentiated from 
molecular association (so-called static q u e n ~ h i n g ~ ~ l ~ ~ )  
by comparing the effect of quencher on the ratio of 
fluorescence intensity to its effect on the fluorescence 
lifetime. 

The only parameters in the calculations shown in 
Figure 3 that cannot be independently measured or 
estimated are the encounter radii, R. They were de- 
terminedZ2 by fitting the measured rate constant at low 
quencher concentration to the unimolecular lifetime 

pB88)11/2 -1 + kobsd B-1/2 = [(DA + &)/(Tuni 

(11-1/2 = [DA/(~,,;~ + kobdp~ss)]1/2 
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Figure 3. Stern-Volmer plots of the ratio of the intensity of 
fluorescence, I, at the given molar concentration of quencher to 
its value, I,, in the absence of quencher. The circles, squares, 
triangles, and diamonds are experimental points from ref 25 (0) 
and ref 24 (m, A, +). The full lines are calculated by using eq 
24 and 25 with ko >> 47rD'R. The dashed line represents the 
prediction of the usual Smoluchowski theory for I- quenching of 
quinine. These curves are corrected from those originally pub- 
lished in ref 22. 

effect predicted by eq 24. For the quenching of pe- 
rylene fluorescence by molecular oxygen the unimo- 
lecular fluorescence lifetime% is 5.4 ns. For this reaction 
the unimolecular lifetime effect increases koM over the 
Smoluchowski value by a factor of 3 even a t  low 
quencher concentrations.z2 

Bimolecular Reactions in Membranes 
The present theory is also applicable to two-dimen- 

sional systems. The only formal difference between two 
and three dimensions involves the definition of the 
Laplacian in the fluctuation equations. This difference 
gives rise to radial distribution functions that involve 
the McDonald function of order zero14J5 rather than the 
Debye-Huckel exponential type form in eq 18. 

An example of a rapid reaction in a membrane is the 
quenching of fluorescence when an excited parinaric 
acid molecule dimerizes with a ground-state molecule.29 
The fluorescence lifetime of parinaric acid is about 5 
ns. In phospholipid bilayers parinaric acid has a dif- 
fusion constantz8 that increases from 4 X cm2/s 
to 7 X cmz/s between 21 and 43 OC. Because this 
reaction is diffusion controlled in solution, it seemed 
that it could be used to determine diffusion constants 
in membranes. Indeed, it was anticipated that kobd for 
this reaction would increase by about 4 orders of mag- 
nitude when the temperature was raised from 21 to 43 
"C. Instead an increase by only a factor of 3 was ob- 
served.28 

Analysis of this reaction by means of the present 
theory suggested why.15 The assumption that parinaric 
acid in both excited and ground state has the same 
diffusion constant, and that it is dilute in the mem- 

(29) C. Morgan, B. Hudson, and P. Wolber,.Proc. Natl. Acad. Sci. 
U.S.A., 77, 26-30 (1980). 
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Figure 4. Unimolecular lifetime effect on k o M / k O  in two di- 
mensions, simulating the photodimerization of parinaric acid. 
Parameter values are kUi = 2 X lo8 s-l, R = 4 A, and ko = 2 X 
lov5 cm2 s-l. Units of D are cm2 s-l. 

brane, gives the results15 shown in Figure 4. There the 
observed rate constant for P + P* - P2 is shown as a 
function of the diffusion constant. Only for an inter- 
mediate range of diffusion constants is a fast reaction 
slowed by a decreased diffusion constant. When the 
diffusion constant is made too small, the unimolecular 
lifetime effect dominates and the rate constant becomes 
independent of diffusion. For the parinaric acid di- 
merization, the factor of 3 increase in kobd between 21 
and 43 O C  is probably associated with internal motions 
of the molecule. 

A more complicated bimolecular process occurring in 
cell membranes is the trapping of receptor molecules 
by static traps called coated pits.30 When visualized 
by electron microscopy coated pits show up as fuzzy 
regions in the cell membrane. Although the pits are too 
large to diffuse, they invaginate into the cell every 
10-300 s. The function of coated pits is to capture 
membrane bound receptors with ligands attached and 
then to transport the ligands into the cell. Because 
diffusion constants for receptors31 can be as small as D 
= lo-" cm2/s, it has been speculated that capture of 
receptors by coated pits may be diffusion ~ont ro l led .~~ 
One might think of using the Berg-Purcell12 or Adam- 
DelbrUck13 modifications of the Smoluchowski theory 
to calculate the observed rate constant. Although these 
results remove the divergence in the two-dimensional 
Smoluchowski theory, they are not applicable to this 
problem33 since the coated pits have a finite lifetime. 

The theory described in this Account includes the 
lifetime of the coated pits in a natural way: It is simply 
one more elementary molecular process that contributes 
to the density fluctuations. By including this process, 
along with diffusion of receptors and the binding and 
dissociation of receptors to coated pits, the transcen- 
dental equation of the binding rate constant34 can be 
written in terms of a McDonald function. For the low 

(30) J. L. Goldstein, R. G. W. Anderson, and M. S. Brown, Nature 

(31) L. S. Bar& and W. W. Webb, J. Cell Biol., 95, 846-62 (1982). 
(32) B. Goldstein, C. Wofay, and G. Bell, Roc. NatE. Acad. Sci. U.S.A., 

(33) B. Goldstein, G. Griego, and C. Wofsy, Biophys. J., 46,573-586 

(34) J. Keizer, J. Ramirez, and E. Peacock-Lopez, Biophys. J., 47, 

(London), 279, 679-85 (1979). 

78, 5695-98 (1981). 

(1984). 

79-87 (1985). 
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Figure 5. The radial distribution function of low density lipo- 
protein receptors around coated pita for different values of the 
dissociation rate constant k-. The lifetime of the coated pits is 
1 / X  = 300 s. 

density lipoprotein receptor30 all parameters required 
to evaluate the binding constant are known, except the 
dissociation rate constant, k-. Using the dissociation 
rate constant as a parameter has made it possible to 
assess the effect of receptor diffusion on the binding 
process. Figure 5 shows the predicted radial distribu- 
tion function% of receptors around an average coated 
pit for various values of k-. If k- is much smaller than 
the invagination rate constant A, diffusion will have a 
major effect on the reaction. Indeed, as Figure 5 shows 
the density of receptors near a pit is depleted by a factor 
of 85% of their average value in the membrane. Thus 
the reaction would be 85% diffusion controlled. On the 
other hand if k- is much larger than A, then dissociation 
injects receptors back into the membrane near the 
boundaries of the coated pits. This overcomes the slow 
process of diffusion, and diffusion no longer affects the 
reaction rate. We have proposed34 that the actual sit- 
uation be determined experimentally by using electron 
microscopy to analyze the radial distribution function 
of receptors around coated pits. 

Since the fluctuation theory is convergent in two 
dimensions, it can be used to examine the validity of 
modifications of the Smoluchowski theory. Consider 
a collection of stationary pits of density pp which act 
as perfect absorbers of dilute, diffusing particles. The 
transcendental equation for the trapping rate constant 
for this mechanism is found to be35 

kobsd = 2aD/K,( [k0b,dpp/D]'/2) (27) 

where KO is the McDonald function of order zero. As 
the density of pita goes to zero, it is possible to show 
that the expression for kobsd reduces to3* 

kobsd = 2D/ppb2[ln ( b / R )  - 0.2311 (28) 
where ab2 = pP-l. The result of Berg and Purcell12 is 
almost the same as this except that the additive con- 
stant in their formula is 3/4. Using a slightly different 
modification in the Smoluchowski theory, Adam and 
DelbrUck13 obtained a value of 1/2 for the additive 
constant. These results depend on the nature of an 
arbitrary boundary that is introduced into those cal- 

(35) J. Keizer, J. Chem. Phys., 79, 4877-81 (1983). 
(36) U. Steiger and J. Keizer, J. Chem. Phys., 77, 777-788 (1982). 
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culations. No such arbitrariness is introduced in the 
fluctuation theory calculation, and eq 28 appears to be 
the correct result at low density. 

Concluding Remarks 
The theory described in this Account provides a new 

way to calculate the rates of rapid reactions in solution. 
It generalizes the usual Smoluchowski theory and is 
applicable to one-, two-, or three-dimensional problems. 
The theory can also be used to examine effects caused 
by rotational diffusion.35 The theory separates the 
calculation of the bimolecular rate constant into a 
chemical and a physical problem. The chemistry is 
contained in an intrinsic reactivity function, which 
depends on the spatial separation of reactants. The 
physics is contained in the nonequilibrium radial dis- 
tribution function of reactant pairs. It is calculated by 
using the hydrodynamic level of the mechanistic sta- 
tistical theory of nonequilibrium  thermodynamic^.^^ 
Agreement between theory and experiment on the 

(37) J. Keizer, Phys. Fluids, 21, 198-208 (1978); J. Keizer and M. 
Medina-Noyola, Physicu A, 115, 301-338 (1982). 

concentration dependence of fluorescence quenching 
rates is 

An advantage of the present theory is that it is sys- 
tematic. Thus, it can be applied to a variety of prob- 
lems without adding ad hoc assumptions.38 For exam- 
ple, to examine the effect of thermal diffusion, it is only 
necessary to include fluctuations in the internal energy 
density in the ca lc~la t ion .~~ Or to examine the effect 
of intermolecular interaction, only the effect of the 
potential of mean force on chemical potentials needs 
to be in~1uded.l~ It would be interesting to extend these 
calculations to include the effect of internal state re- 
laxation, solvent density fluctuations, and other dy- 
namic processes in solution. With use of the statistical 
theory of density fluctuations, calculations like these 
should be relatively easy to execute. 
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The hexagon is a fundamental structure of nature. 
A honeycomb, for example, is made up of a cluster of 
hexagonal cells, and each inner billiard ball of a new 
setup on a pool table is surrounded by precisely six 
other balls. Epidermal plant cells, the grain structure 
in a polished/etched metallurgical cross section, the 
system of veins in the wing of a dragonfly, and the 
two-dimensional pattern formed by mud cracks all have 
six sides on the average.' The random pattern of points 
obtained by viewing the heavenly bodies of interstellar 
space has a cellular two-dimensional structure which 
on the average is hexagonal.2 An example closer to 
chemistry is found in graphite whose hexagonal lattice 
resembles the honeycomb cluster of hexagonal cells.3 

An important class of chemical compounds known as 
polycyclic aromatic hydrocarbons have molecular 
structures based on the hexagon. Polycyclic aromatic 
hydrocarbons or PAHs are ubiquitous chemicals which 
have been found even in interstellar matter.4 Many 
of them are cancer  initiator^.^ Burning wood, coal or 
petroleum, barbecuing meat, or frying foods produces 
PAHs via incomplete oxidation. Tar produced by the 
combustion of organic matter has been shown to be 
carcinogenic due to the presence of the polycyclic aro- 
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matic benzo[a]pyrene. Soot, smoke, and airborne 
particulates contain polycylic aromatic hydrocarbons, 
and in the U S A .  alone, 900-1000 metric tons of ben- 
zo[a]pyrene are released annually into the environment 
by combustion of fossil fuels.6 On the other hand, 
numerous polycyclic aromatic hydrocarbon compounds 
find application as synthetic intermediates, organic 
semiconductors and photoconductors, photochromic 
pigments, fluoresent and phosphorescent agents, an- 
tistatic additives for plastics, and models in theoretical 
studies.I 

The development of a formula periodic table for 
benzenoid polycyclic aromatic hydrocarbons (Table I) 
has shown that the structure of the PAHs can be in- 
strumental in systematizing them into a unified 
framework. This periodic table is based on the unique 
application of graph theoretical princip1ess8 As we 
explain in this Account the basis of this table is that 
all totally fused ring graph structures having only sec- 
ond and third degree vertices obey a simple numerical 
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